789 research outputs found

    Decision Support System for City Logistics: Literature Review, and Guidelines for an Ex-ante Model

    Get PDF
    AbstractThe world is inexorably becoming urban. Since 2008, urban population is higher than the rural population. Therefore, cities are increasingly important systems for contemporary society. Phenomena such as urbanization and globalization have contributed to make urban centers more and more complex. One of the most important aspects is urban freight transportation, which is affected also by the spatial distribution of activities and residences. It follows that role of decision-makers is increasingly difficult due to limited economic and space resources that concern the urban areas. Besides, recent trends promoted by European Commission in the field of sustainable development require a profound reflections concerning the choice of transportation policies, and design of infrastructures. On the path towards to cities sustainability, local authorities have to make important decisions related to urban freight distribution.In this complex framework, the present paper describes the first phase of a two-year research project called “SIPLUS - Systems for Sustainable Urban Planning of Logistics”. The goal of SIPLUS is “development an ex-ante model for evaluation of interventions and investments in urban goods distribution, in favor of the municipalities”. It is a decision support system for authorities and decision-makers. At the end of the project, there will be a pilot actions with the application of proposed models in at least one European city.This paper describes the first results, which mainly concern literature review, state of the art, analysis of European best practices in city logistics, and the general framework of proposed model

    Micro Smart Micro-grid and Its Cyber Security Aspects in a Port Infrastructure

    Get PDF
    Maritime ports are intensive energy areas with a plenty of electrical systems that require an average power of many tens of megawatts (MW). Competitiveness, profits, reduction of pollution, reliability of operations, carbon emission trading are important energy related considerations for any port authority. Current technology allows the deployment of a local micro-grid of the size of tenths of MW, capable of islanded operation in case of emergency and to grant an increasing energy independency. Ownership of the grid permits a large flexibility on prices of energy sold inside the port, trading on local electric market and reduction of pollution. Renewable energy generation has a large impact on costs since features a low marginal cost. Unfortunately the smart grid is a critical asset within the port infrastructure and its intelligence is a high-level target for cyberattacks. Such attacks are often based on malicious software (malware), which makes use of a controlling entity on the network to coordinate and propagate. In this document, we will outline some features of a port smart grid and typical characteristics of cyber-attacks including potential ways to recognize it and suggestion for effective countermeasures

    Integrating Dynamic Route Planning : Feasibility of integrating dynamic route planning in Maritime Spatial Planning

    Get PDF
    MONALISA 2.0 report on the feasibility of integrating dynamic route planning in Maritime Spatial Planning (MSP.https://commons.wmu.se/monalisa2/1002/thumbnail.jp

    Post-Transplant Nivolumab Plus Unselected Autologous Lymphocytes in Refractory Hodgkin Lymphoma: A Feasible and Promising Salvage Therapy Associated With Expansion and Maturation of NK Cells

    Get PDF
    Immune checkpoint inhibitors (CI) have demonstrated clinical activity in Hodgkin Lymphoma (HL) patients relapsing after autologous stem cell transplantation (ASCT), although only 20% complete response (CR) rate was observed. The efficacy of CI is strictly related to the host immune competence, which is impaired in heavily pre-treated HL patients. Here, we aimed to enhance the activity of early post-ASCT CI (nivolumab) administration with the infusion of autologous lymphocytes (ALI). Twelve patients with relapse/refractory (R/R) HL (median age 28.5 years; range 18-65), underwent lymphocyte apheresis after first line chemotherapy and then proceeded to salvage therapy. Subsequently, 9 patients with progressive disease at ASCT received early post-transplant CI supported with four ALI, whereas 3 responding patients received ALI alone, as a control cohort. No severe adverse events were recorded. HL-treated patients achieved negative PET scan CR and 8 are alive and disease-free after a median follow-up of 28 months. Four patients underwent subsequent allogeneic SCT. Phenotypic analysis of circulating cells showed a faster expansion of highly differentiated NK cells in ALI plus nivolumab-treated patients as compared to control patients. Our data show anti-tumor activity with good tolerability of ALI + CI for R/R HL and suggest that this setting may accelerate NK cell development/maturation and favor the expansion of the "adaptive" NK cell compartment in patients with HCMV seropositivity, in the absence of HCMV reactivation

    The large area detector onboard the eXTP mission

    Get PDF
    The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance

    All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe

    Get PDF
    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Measurement of b jet shapes in proton-proton collisions at root s=5.02 TeV

    Get PDF
    We present the first study of charged-hadron production associated with jets originating from b quarks in proton-proton collisions at a center-of-mass energy of 5.02 TeV. The data sample used in this study was collected with the CMS detector at the CERN LHC and corresponds to an integrated luminosity of 27.4 pb(-1). To characterize the jet substructure, the differential jet shapes, defined as the normalized transverse momentum distribution of charged hadrons as a function of angular distance from the jet axis, are measured for b jets. In addition to the jet shapes, the per-jet yields of charged particles associated with b jets are also quantified, again as a function of the angular distance with respect to the jet axis. Extracted jet shape and particle yield distributions for b jets are compared with results for inclusive jets, as well as with the predictions from the pythia and herwig++ event generators.Peer reviewe
    corecore